Deletion of eIF2beta suppresses testicular cancer incidence and causes recessive lethality in agouti-yellow mice.

نویسندگان

  • Jason D Heaney
  • Megan V Michelson
  • Kirsten K Youngren
  • Man-Yee J Lam
  • Joseph H Nadeau
چکیده

The agouti-yellow (A(y)) deletion is the only genetic modifier known to suppress testicular germ cell tumor (TGCT) susceptibility in mice or humans. The A(y) mutation deletes Raly and Eif2s2, and induces the ectopic expression of agouti, all of which are potential TGCT-modifying mutations. Here we report that the reduced TGCT incidence of heterozygous A(y) males and the recessive embryonic lethality of A(y) are caused by the deletion of Eif2s2, the beta subunit of translation initiation factor eIF2. We found that the incidence of affected males was reduced 2-fold in mice that were partially deficient for Eif2s2 and that embryonic lethality occurred near the time of implantation in mice that were fully deficient for Eif2s2. In contrast, neither reduced expression of Raly in gene-trap mice nor ectopic expression of agouti in transgenic or viable-yellow (A(vy)) mutants affected TGCT incidence or embryonic viability. In addition, we provide evidence that partial deficiency of Eif2s2 attenuated germ cell proliferation and differentiation, both of which are important to TGCT formation. These results show that germ cell development and TGCT pathogenesis are sensitive to the availability of the eIF2 translation initiation complex and to changes in the rate of translation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recessive black is allelic to the yellow plumage locus in Japanese quail and associated with a frameshift deletion in the ASIP gene.

The recessive black plumage mutation in the Japanese quail (Coturnix japonica) is controlled by an autosomal recessive gene (rb) and displays a blackish-brown phenotype in the recessive homozygous state (rb/rb). A similar black coat color phenotype in nonagouti mice is caused by an autosomal recessive mutation at the agouti locus. An allelism test showed that wild type and mutations for yellow,...

متن کامل

The embryonic lethality of homozygous lethal yellow mice (Ay/Ay) is associated with the disruption of a novel RNA-binding protein.

Lethal yellow (Ay) is a mutation at the mouse agouti (a) locus that is associated with an all-yellow coat color, obesity, diabetes, tumors in heterozygotes, and preimplantation embryonic lethality in homozygotes. Previously, we cloned and characterized the wild-type agouti gene and demonstrated that it expresses a 0.8-kb mRNA in neonatal skin. In contrast, Ay expresses a 1.1-kb transcript that ...

متن کامل

Pleiotropic effects of the mouse lethal yellow (Ay) mutation explained by deletion of a maternally expressed gene and the simultaneous production of agouti fusion RNAs.

Heterozygosity for the mouse lethal yellow (Ay) mutation leads to obesity, increased tumor susceptibility and increased activity of the agouti coat color gene; homozygosity for Ay results in embryonic death around the time of implantation. Although these pleiotropic effects have not been separated by recombination, previous studies have suggested that the dominant and recessive effects result f...

متن کامل

Aqueous Extract of Nigella sativa Seeds Suppresses Testicular Steroidogenesis In Mice Leydig Cells, in vitro

Nigella sativa (black seed) is an important medicinal herb with folkloric use in wide range of diseases. It is well studied for its biological activities. However, there is limited information regarding its effect on the male reproductive system. This study describes the effect of the aqueous extract of N. sativa (NSE) on testicular steroidogenesis from mice Leydig cells in vitro . Mice tes...

متن کامل

Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur.

Mice that carry the lethal yellow (Ay) or viable yellow (Avy) mutation, two dominant mutations of the agouti (a) gene in mouse chromosome 2, exhibit a phenotype that includes yellow fur, marked obesity, a form of type II diabetes associated with insulin resistance, and an increased susceptibility to tumor development. Molecular analyses of these and several other dominant "obese yellow" a-locus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human molecular genetics

دوره 18 8  شماره 

صفحات  -

تاریخ انتشار 2009